

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

DA 120821

A BOLATOR I

Anti-Control Springer Control State Control and Language

82 10 28 04I

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE			READ INSTRUCTIONS BEFORE COMPLETING FORM	
I. REPORT HUMBER		1	3. RECIPIENT'S CATALOG NUMBER	7
NRL Memorandum Report 4	901	AD-A1208.		4
4. TITLE (and Sublitio) LINEAR THEORY OF THE E X B INSTABILITY WITH AN INHOMOGENEOUS BLECTRIC FIELD		S. TYPE OF REPORT & PERIOD COVERED Interim report on a continuing NRL problem.		
INTUMUGENEOUS BLECT	RIC FIELD		6. PERFORMING ORG. REPORT NUMBER	7
7. AUTHOR(a)			B. CONTRACT OR GRANT NUMBER(s)	1
J.D. Huba, S.L. Ossakow, P. 8	letayanarayane*	, and P.N. Guzdar**		
9. PERFORMING ORGANIZATION N	ME AND ADDRESS		16. PROGRAM EL EMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	┥
Naval Research Laboratory Washington, DC 20375			62715H; 61158N; RR088-02-44; 47-0889-0-2; 47-0888-0-2	\$6
11. CONTROLLING OFFICE NAME A	ND ADDRESS		12. REPORT DATE	7
Office of Naval Research	Defense Nuclea		October 18, 1982	
Arlington, VA 22217	Washington, DC	20805	13. NUMBER OF PAGES	1
TA. MONITORING AGENCY NAME &	ADDRESS/II dilleren	I from Controlling Office)	18. SECURITY CLASS. (of this report)	1
	•		UNCLASSIFIED 15a. DECLASSIFICATION/SOWNGRADING SCHEDULE	1
Approved for public release; (17. DISTRIBUTION STATEMENT (of	distribution unli		ter Report)	-
18. SUPPLEMENTARY NOTES		·.		
*Present address: Berkeley S **Present address: Science Ap (Permanen	plications, Inc., it address: Unive	McLean, VA 22102 ersity of Maryland, Co	ollege Park, MD 20742) (Continues)	
19. KEY WORDS (Continue on reverse E × B instability	side if necessary an	d identify by block number; Velocity she		
Barium cloud striations High-latitude F region irregul		Long wavele	ngth selectivity	
field that is at an arbitrary an parallel to the density gradier the mode structure of the un- includes ion inertia effects; (2	the $E \times B$ instable to the density at to be inhomogoustable waves in the contract of the con	ollity is developed wh by gradient, and allow geneous. A differentie the direction of the in litrary density and ele- see L is the width of the	ich considers an ambient electric s the electric field component al equation is derived which describes homogeneities. The theory (1) etric field profiles; and (3) is valid in the boundary layer. The main results	→
·	- K 2	help	(Continues)	j

DD 1700 1473

EDITION OF 1 NOV 65 IS OBSOLETS 8/N 0102-014-6601

ARRIVATE AL AMERICATION OF THIS PAGE /Thes Date Below

MTT TALLABORICATION OF THIS PAGE (Then Date Entered ementary Notes (Continued) This work was partially sponsored by the Defense Nuclear Agency under Subtack 800QAXHC, work unit 00002; work unit title "Planne Structure Evolution," and by the Office of Naval Research. -V sub vz Abstract (Continued) of the analysis are as follows. First, the inhomogeneous relocity flow caused by the inhomogeneous electric field can stabilize the instability. Second, short/wavelength modes are preferentially stabilized ever longer wavelength modes. Third, the stabilization/mechanism is associated with the x dependent, Doppher-shifted frequency $(x_1, y_2, y_3, y_4, y_5)$ where $(V, (x_1) = -cR_x(x)/R_y$ and not velocity their terms proportional to λV . Given λM . And fourth, the marginal stability exterion is weakly dependent on the magnitude of (x_1, y_4, y_5) applications of these results to isomorpheric phenomena are discussed, viz. ide Pregion irregularities. omega-Kandy Yand & (A) nu cin)/omega Accession Por MTIS GRANI DTIC TAB Unampounded Justification By_ Distribution/

Availability Codes
Avail and/or

Special

Digt

CONTENTS

I.	INTRODUCTION	1
n.	THEORY	5
Ш.	RESULTS	11
ĮV.	DISCUSSION	86
	ACENOWLEDGMENTS	39
	REFERENCES	40

LINEAR THEORY OF THE E X B INSTABILITY WITH AN INHOMOGENEOUS ELECTRIC FIELD

I. INTRODUCTION

An important instability associated with the structuring of ionospheric plasmas (e.g., high latitude F region and barium clouds) is the E × B instability, also known as the gradient drift instability. The instability is an interchange instability which can occur in an inhomogeneous, weakly collisional, magnetized plasma that contains an ambient electric field orthogonal to both the ambient magnetic field and the density gradient. A simple physical picture of the instability mechanism is shown in Fig. 1. We consider a plasma such that $E = B e_x$, $E = E e_y$, n = n(x) with $\partial n/\partial x > 0$ and $v_{en}/\Omega_e \ll v_{in}/\Omega_i$ \ll 1 where $v_{\alpha n}$ is the collision frequency between species α and neutrals, and Ω_{α} is the cyclotron frequency of species α . Upon this plasma we impose a density perturbation on \sim on $sin(k_y)$ as shown in Fig. 1. The influence of E on the plasma is to cause (1) the electrons and ions to E × E drift in the x direction and (2) an ion Pedersen drift in the y direction. The latter effect induces a space charge perturbation electric field denoted by 6g. The response of the plasma to this perturbed electric field is to drift with a velocity $\delta Y = c \delta E \times B/B^2$. For the configuration shown in Fig. 1, 6Y causes the "heavy" fluid perturbation to fall into the "light" fluid (region I), and the "light" fluid perturbation to rise into the "heavy" fluid (region II) - the classic interchange phenomenon. Of course, if the direction of 2n/2x or E, were reversed then the density perturbation would be demped.

The original study of the E × B instability was by Simon (1963) and Hoh (1963), who applied it to laboratory gas discharge experiments. Subsequent to these first investigations, a considerable amount of Manuscript submitted July 8, 1962.

Pig. 1 Schematic of the physical mechanism of the E x 2 instability.

research has been devoted to explaining ionospheric phenomena based upon this instability (Linson and Workman, 1970 and references therein; Simon, 1970; Wolk and Emerendel, 1971; Perkins et al., 1973; Zabusky et al., 1973; Shiau and Simon, 1972; Perkins and Doles, 1975; Scannapieco et al., 1976; Chaturvedi and Ossakow, 1979; Keskinen and Ossakow, 1982). Two areas of present interest concerning the instability are barium cloud strictions (see for example the review papers Ossakow (1979) and Ossakow et al. (1982), and the references therein) and the structuring of plasma "blobe" in the high latitude F region (Vickrey et al., 1980; Keskinen and Ossakow, 1982).

The purpose of this paper is to present a general theory of the E × B instability which considers an ambient electric field at an arbitrary angle to the density gradient, and allows the electric field component parallel to the density gradient to be inhomogeneous. Some aspects of the problem have been treated by Parkins et al. (1973) and Perkins and Doles (1975). Perkins and Doles (1975) made the important discovery that the sheared velocity flow (resulting from an inhomogeneous electric field parallel to the density gradient) can stabilise the instability. Furthermore, short wevelength modes are preferentially stabilised over longer wavelength modes. The work of Ferkins and Doles (1975) considered the strong collision limit $(v_{in} \gg \omega)$, assumed a specific density profile amenable to analytical theory, and is valid only in the short wavelength regime, i.e., $k_L \gg 1$ where L is the scale length of the boundary layer. The present study extends the theory of Perkins and Doles (1975) by removing these restrictions. Namely, we derive a differential equation which describes the mode structure of the E × E instability. Ion inertia effects are included so that the ratio v_{in}/ω is arbitrary. Moreover, we

solve this equation numerically so that arbitrary density and electric field profiles can be considered, and the regime $k_{\rm p}L < 1$ can be investigated self-consistently.

The principal results of this work are the following.

- 1. The basic conclusions of Perkins and Doles (1975) are verified numerically. Specifically, the marginal stability criterion they derive analytically agrees well with our numerical result.
- 2. The marginal stability criterion is weakly dependent upon the magnitude of v_{in}/ω .
- 3. The stabilization mechanism is associated with the x dependent, Doppler-shifted frequency $w = k_y V_y(x)$, where $V_y(x) = -c E_x(x)/B$, and not velocity shear terms proportional to $\partial V_y/\partial x$ or $\partial^2 V_y/\partial x^2$.
- 4. When $E_{\chi}(x_0) \gtrsim E_{\chi}$, where x_0 is the position about which the mode is localised, the most unstable modes have $k_L \lesssim 1$.

The organisation of the paper is as follows. In Section II we derive the mode structure equation for the $E \times E$ instability. In Section III we present both analytical and numerical results based upon this equation. Finally, in Section IV we summarize our results and discuss applications to ionopheric phenomens, i.e., berium cloud strictions and high latitude F region irregularities.

II. THEORY

The equilibrium configuration used in the analysis is shown in Fig. 2. The ambient magnetic and electric fields are in the z direction and the xy plane, respectively, where $B_x = B \stackrel{\circ}{e}_z$ and $E_x = E_x(x) \stackrel{\circ}{e}_x + E_y \stackrel{\circ}{e}_y$. The electric field in the y direction is constant, while the electric field in the x direction is allowed to be a function of x. This gives rise to an inhomogeneous velocity flow in the y direction, i.e., $V_y(x) = -cE_x(x)/B$. The density is taken to be inhomogeneous in the x direction (n = n(x)) and temperature effects are ignored.

The basic assumptions used in the analysis are as follows. We assume that the perturbed quantities vary as $\delta p \sim \delta p(x)$ exp $[i(k_yy - \omega t)]$, where k_y is the wave number along y direction and $\omega = \omega_x + i\gamma$, implying growth for $\gamma > 0$. The ordering in the frequencies is such that $\omega \ll \Omega_i$ and $\nu_{in} \ll \Omega_i$ (the F region approximation), where ν_{in} is the ion-neutral collision frequency and Ω_i is the ion gyrofrequency. We neglect terms of order ω/Ω_i and ν_{in}/Ω_i , but retain terms of order ν_{in}/ω . We ignore finite gyroradius effects by limiting the wavelength domain to $kr_{ii} \ll 1$, where r_{ii} is the mean ion Larmor radius. We neglect perturbations along the magnetic field $(k_i = 0)$ so that only the two-dimensional mode structure in the xy plane is obtained. We retain ion inertial effects, thereby including the ion polarization drift, but ignore electron inertia.

A key feature of our analysis is that a nonlocal theory is developed. That is, the mode structure of the potential in the x direction, the direction in which density and the flow velocity are assumed to vary, is determined by a differential equation rather than an algebraic equation obtained by Fourier analysis. This is crucial to the

analysis since Perkins and Doles (1975) have shown that a nonlocal analysis is necessary to demonstrate the stabilizing influence of velocity shear, due to the inhomogeneous electric field parallel to the density gradient.

The fundamental equations used in the analysis are continuity and momentum transfer:

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} \nabla_{\alpha}) = 0 \tag{1}$$

$$0 = -\frac{e}{m_a} \left(\underbrace{E} + \frac{1}{c} \underbrace{V}_e \times \underbrace{B} \right) \tag{2}$$

$$\left(\frac{\partial}{\partial t} + \mathbf{y}_{1} \cdot \nabla\right) \mathbf{y}_{1} = \frac{e}{m_{1}} \left(\mathbf{E} + \frac{1}{c} \mathbf{y}_{1} \times \mathbf{E}\right) - \mathbf{v}_{1n} \mathbf{y}_{1} \tag{3}$$

where a denotes species (e: electrons, i: ions) and other variables have their usual meaning. Note that electron inertia terms are neglected, but ion inertia terms are included, and that the neutral wind is assumed to be zero. The equilibrium drifts are

$$v_{e} = -cE_{x}(x)/B \hat{e}_{y}$$
 (4)

$$V_i = ((v_{in}/\Omega_i) cE_x(x)/B + (cE_x(x)/B\Omega_i) cE_y/B) \hat{e}_x$$

+
$$\left(-cE_{\mathbf{x}}(\mathbf{x})/B + (v_{\mathbf{in}}/\Omega_{\mathbf{i}}) cE_{\mathbf{y}}/B\right) \hat{\mathbf{e}}_{\mathbf{y}}$$
 (5)

where we have chosen a reference frame such that $V_x = V_x - cE_y/B$, $\Omega_1 = eB/m_1c$ and $E_x'(x) = \partial E_x/\partial x$. A relationship between n(x) and $E_x(x)$ can be derived by assuming $\nabla \cdot J = \nabla \cdot [n(V_1 - V_2)] = 0$ which reduces to

$$\nabla \cdot (\mathbf{n} \ \mathbf{y}_{i}) = 0 \tag{6}$$

Equation (6) leads to

$$n(x) \left((v_{in}/\Omega_i) cE_x(x)/B + (cE_x'(x)/B\Omega_i) cE_y/B \right) = constant$$
 (7)

where we take the constant to be the LHS of Eq. (7) evaluated at $x = -\infty$. Thus, by specifying the density profile, the electric field profile $E_{\mathbf{x}}(\mathbf{x})$ can be determined from Eq. (7). Of course, if there are sources and/or sinks in the plasma such that $\nabla \cdot (\mathbf{n} \nabla_{\mathbf{i}}) \neq 0$, then Eq. (7) is not applicable.

We now consider a linear perturbation analysis of Eqs. (1)-(3). We assume $n_{\alpha} = n_{\alpha} + \delta n_{\alpha}$, $V_{\alpha} = V_{\alpha} + \delta V_{\alpha}$ and $E = E - V_{\phi}$ where ϕ is the perturbed electrostatic potential. Using Eqs. (2) and (3), we obtain

$$\delta V_{ex} = -ik_y \phi (c/B)$$
 (8)

$$\delta V_{ey} = \phi^* (c/B) \tag{9}$$

$$\delta V_{ix} = \left(-ik_y(1 - V_{iy}^{\prime}/\Omega_i) + i(\overline{\omega}/\Omega_i) + - (V_{ix}^{\prime}/\Omega_i) + - (C/B)\right)$$
 (10)

$$\delta V_{iy} = \left(-k_y(\overline{\omega}/\Omega_i + i V_{ix}/\Omega_i) + (1 - ik_y V_{ix}/\Omega_i) + C\right) (c/B)$$
 (11)

where $\overline{\omega} = \omega + iv_{in} - k_y v_{iy}$, $v'_{iy} = \partial v_{iy}/\partial x$, $v'_{ix} = \partial v_{ix}/\partial x$, $\phi' = \partial \phi/\partial x$ and $\phi'' = \partial^2 \phi/\partial x^2$. Substituting Eqs. (8) - (11) into Eq (1), one can show that for the ions

$$-\frac{B}{c}\frac{\Omega_{1}}{\overline{\omega}}\left(\omega^{\frac{1}{n}}\frac{\delta n_{1}}{n}+iV_{1x}\frac{\delta n_{1}^{\prime}}{n}\right)+\frac{V_{1x}}{\overline{\omega}}\phi^{\prime\prime\prime}+\left(1+i\frac{n^{\prime}}{n}\frac{V_{1x}}{\overline{\omega}}\right)\phi^{\prime\prime\prime}$$

$$+\left(-ik_{y}^{2}\frac{v_{ix}}{\overline{\omega}}+\frac{n'}{n}+i\frac{v_{ix}}{\overline{u}_{i}}\left(\frac{n'}{n}\right)'\right)\phi'+\left(-k_{y}^{2}\left(1+\frac{v_{ix}}{\overline{\omega}}\right)+\frac{k_{y}v_{iy}'}{\overline{\omega}}\right)$$
(12)

$$+\frac{n'}{n}\frac{k_y \nabla_{iy}}{\overline{\omega}} - \frac{n'}{n}\frac{k_y \Omega_i}{\overline{\omega}}) \phi = 0$$

and for the electrons

$$\frac{\hat{\sigma}_{e}}{n} = -\frac{c}{B} \frac{k \phi}{(\omega - k_{y} V_{ey})} \frac{n'}{n}$$
 (13)

where $\omega^* = \omega - k_y V_{iy} + i V_{ix}$ and the superscripts (','',''') indicate first, second and third derivatives with respect to x, respectively.

We assume quasineutrality and take $\delta n_e = \delta n_i$. The following equation is then obtained from Eqs. (12) and (13),

$$1 \frac{v_{1x}}{\bar{\omega}} \phi^{--} + \left(1 + 1 \frac{n}{n} \frac{v_{1x}}{\bar{\omega}}\right) \phi^{--} + \left(\frac{n}{n} + 1 \frac{k_y v_{1x}}{\bar{\omega}} \left(-k_y + \frac{\bar{\omega}}{\Omega_1} \frac{1}{k_y} \left(\frac{n}{n}\right)\right)\right)$$

$$+\frac{\Omega_{1}}{\omega-k_{y}V_{ey}}\frac{n^{2}}{n}) + \left(-k_{y}^{2}\left(1+\frac{V_{1x}^{2}}{\overline{\omega}}\right)+\frac{k_{y}V_{1y}^{2}}{\overline{\omega}}+\frac{n^{2}}{n}\cdot\frac{k_{y}V_{1y}^{2}}{\overline{\omega}}\right)$$

+
$$i \frac{k_y V_{ix}}{\omega - k_y V_{ey}} \frac{\Omega_i}{\bar{\omega}} \frac{n}{n} - i \frac{k_y V_{ey}}{\omega - k_y V_{ey}} \frac{n}{n} \frac{v_{in}}{\bar{\omega}} \frac{\omega}{\omega - k_y V_{ey}}$$

$$-\frac{v_{in}}{\overline{u}}\frac{n^{2}}{n}\frac{k_{y}}{u-k_{y}V_{qy}}k_{y}(cE_{y}/B)) + = 0$$
 (14)

We simplify Eq. (14) by assuming the following ordering scheme: $\partial/\partial x < k_y$, $v_{in}/\Omega_i << 1$, $V' \simeq V/L$, $V'' \simeq V/L^2$, $k_y L << \Omega_i/v_{in}$, $k_y L << \Omega_i/\omega$ where L is the scale length of the inhomogeneous plasma boundary layer. Equation (14) can now be written as

$$\phi^{-} + \left(\frac{n}{n}\left(1 - \frac{i\nu_{in}}{\widetilde{\omega}} \frac{k_{y} v_{ey}}{\widetilde{\omega} + i\nu_{in}}\right)\right) \phi^{-}$$

$$+ \left(-k_{y}^{2} - \frac{k_{y}(cE_{y}/B)}{\widetilde{\omega} + i\nu_{in}} \frac{\nu_{in}}{\widetilde{\omega}} \frac{k_{y}n^{-}}{n} + \frac{n}{n} \frac{k_{y} v_{ey}}{\widetilde{\omega} + i\nu_{in}}\right)$$

$$-\frac{\mathbf{k}_{\mathbf{y}}\nabla_{\mathbf{e}\mathbf{y}}}{\widetilde{\omega}+i\nu_{\mathbf{i}\mathbf{n}}}\frac{i\nu_{\mathbf{i}\mathbf{n}}}{\widetilde{\omega}}\left(\frac{\mathbf{n}^{-}}{\mathbf{n}}+\frac{\nabla_{\mathbf{e}\mathbf{y}}}{\nabla_{\mathbf{e}\mathbf{y}}}\frac{\mathbf{n}^{-}}{\mathbf{n}}\frac{\omega}{\widetilde{\omega}}\right)\right)\phi=0$$
(15)

where $\tilde{\omega} = \omega - k_y V_{ey}(x) = \omega + k_y (cE_x(x)/B)$. Equation (15) describes the two-dimensional mode structure of ϕ for the $E \times B$ instability in a velocity sheared plasma for arbitrary v_{in}/ω .

III. RESULTS

A. Analytical Results

In general, Eq. (15) requires a numerical analysis for arbitrary density and electric field profiles. However, insight into the nature of the $\mathbb{E} \times \mathbb{E}$ instability can be gained by first considering several limiting cases.

1. Local Theory

We first reduce the differential equation, Eq. (15), to an albegraic equation by making use of local theory. That is, we let $\partial/\partial x + ik_x$, and assume $k_x^2 L_n^2 >> 1$ and $k_y^2 L_n^2 >> 1$ where $L_n = (n^2/n)^{-1}$ is the scale length of the density inhomogeneity evaluated at $x = x_0$. For simplicity, we also take $E = E_x \hat{e}_x + E_y \hat{e}_y = \text{constant}$. In this limit, Eq. (15) becomes

$$k^{2}L_{n}^{2} + k_{y}L_{n} \frac{v_{in}}{\widetilde{\omega}} \frac{\underline{k} \cdot \underline{E} (c/B)}{\widetilde{\omega} + iv_{in}} = 0$$
 (16)

where $\tilde{\omega} = \omega - k_y V_{ey}$ and $V_{ey} = - c k_x / B$. Equation (16) has the solution

$$\tilde{\omega} = -i \frac{v_{in}}{2} + 1 + (1 + 4 \frac{k_y}{k} + \frac{k_z \cdot E_z}{v_{in} k L_p})^{1/2}$$
 (17)

Instability occurs when

$$\frac{k_y}{k} \quad \frac{k \cdot k}{k L_n} \quad > 0. \tag{18}$$

The growth rates of the instability in the strong and weak collisional limits are, respectively,

$$\gamma = \frac{k_y}{k} \frac{k \cdot k \cdot k \cdot (c/B)}{kL_n} ; v_{in} \gg \omega$$
 (19)

$$\gamma = \frac{k_y}{k} \left(\frac{k \cdot k \cdot k \cdot (c/B)}{kL_n} v_{in} \right)^{1/2} ; v_{in} \ll \omega$$
 (20)

with a real frequency $\omega = k_y V_{ey}$ in each case. Note that instability can occur for $E_y = 0$ as long as $k_y \neq 0$ and $E_x \neq 0$ (Eq. (18); see also Meskinen and Ossakow (1982). For $k = k_y$, one obtains the usual $E \times E$ gradient drift instability growth rate (Linson and Workman, 1971) in Eq. (19), and the so-called high altitude limit (Ossakow et al., 1978) of the $E \times E$ gradient drift instability in Eq. (20).

2. Monlocal Theory

In deriving Eq. (16) the local approximation is used. That is, the dispersion equation is solved based upon the plasma parameters at a particular value of x, say $x = x_0$; usually where n'/n is a maximum which leads to maximum growth. If we now assume $E_x = E_x(x)$ then a sheared E x B velocity flow arises $V_y = V_{ey}(x) = -cE_x(x)/B$. Applying local theory to this situation, one might expect that Eq. (16) is still valid with V_{ey} evaluated at x_0 , i.e., $V_{ey} = V_{ey}(x_0)$. Thus, Eqs. (19) and (20) follow accordingly, but the real frequency is now given by $\omega_x = k_y V_{ey}(x_0)$. However, Perkins and Doles (1975) have shown, both analytically and using numerical simulations, that this is not the case. We do not reproduce their detailed analysis here, but rather, point out the important result of their work.

Ferkins and Doles (1975) consider the strong collision limit ($v_{in} >> \omega$) so that ion inertia terms can be neglected. Furthermore,

they assume $\nabla \cdot (n \ Y) = 0$ which leads to

$$n(x) E_{x}(x) = n_{o} E_{ox} = constant$$
 (21)

where $n_0 = n(x = -\infty)$ and $E_{OX} = E_X(x = -\infty)$. This is evident from Eq. (7) by noting that $E_X'(x) \sim E_X/L_n$ and $v_{in} >> \omega \sim cE_y/BL_n$. In this limit, Eq. (15) reduces to

$$\phi^{\prime\prime\prime} + \left[\frac{n^{\prime\prime}}{n} \left(1 - \frac{k^{\prime} e y}{\widetilde{\omega}}\right)\right] \phi^{\prime\prime}$$

$$+ \left[-k^{\prime\prime}_{y} + i \frac{k^{\prime\prime}_{y} (cE_{y}/B)}{\widetilde{\omega}} \frac{k^{\prime\prime}_{y}}{n} - \frac{k^{\prime\prime}_{y} e y}{\widetilde{\omega}} \left(\frac{n^{\prime\prime\prime}}{n} + \frac{V^{\prime\prime}_{e y}}{V_{e y}} \frac{n^{\prime\prime}}{n} \frac{\omega}{\widetilde{\omega}}\right)\right] \phi = 0 \qquad (22)$$

where $\tilde{\omega} = \omega - k_y V_{ey}$, $V_{ey} = -(cE_{ox}/B)(n_o/n(x))$ and $V_{ey} = -(cE_{ox}/B)(n_o/n(x))^2$. Perkins and Doles (1975) expand Eq. (22) about $x = x_o$ where x_o is the position of maximum n^2/n by taking

$$n^{-}/n = [1-(x-x_{0})^{2}/D^{2}]/L_{n}$$
 (23)

Assuming $k_y^2 L_n^2 \gg 1$ and $k_y^2 D^2 \gg 1$, and by making several variable changes, they solve Eq. (22) analytically. The important conclusion of their theory is that is that the $E \times E$ instability is stabilized when

$$\frac{R_{\mathbf{x}}(\mathbf{x}_{0})}{R_{\mathbf{y}}} > \frac{2}{R_{\mathbf{y}}D} \tag{24}$$

Thus, the influence of velocity shear, i.e., an inhomogeneous R_{χ} , is to preferentially stabilise the short wavelength modes, those with $k_{\chi}D >> 1$.

B. Numerical Results

In order to solve Eq. (15) numerically, and also to gain insight into the nature of the solutions, we transform Eq. (15). First, we note that Eq. (15) is of the form

$$\phi^{-} + p(x) \phi^{-} + q(x) \phi = 0$$
 (25)

where p(x) and q(x) are the coefficients of ϕ^* and ϕ , respectively, in Eq. (15). We let

$$\phi = \widetilde{\phi} \exp(-1/2)^{X} p(s) ds$$
 (26)

Substituting Eq. (26) into Eq. (25), we find that the transformed equation is

$$\tilde{\phi}^{-} - Q(\mathbf{x}) \quad \tilde{\phi} = 0 \tag{27}$$

where

$$Q(x) = -q(x) + 1/2 p'(x) + 1/4 (p(x))^{2}$$
 (28)

and

$$p(x) = \frac{n^{2}}{n} \left(1 - \frac{iv_{in}}{\tilde{\omega}} \frac{k_{y} V_{ey}}{\tilde{\omega} + iv_{in}}\right)$$
 (29)

$$p'(x) = (\frac{n''}{n} - (\frac{n'}{n})^2) \left(1 - \frac{iv_{in}}{\widetilde{\omega}} \frac{k_y v_{ey}}{\widetilde{\omega} + iv_{in}}\right)$$

$$-\frac{n}{n}\frac{k_{y}\nabla_{ey}}{\widetilde{\omega}+i\nu_{in}}\frac{i\nu_{in}}{\widetilde{\omega}}\left(1+\frac{k_{y}\nabla_{ey}}{\widetilde{\omega}+i\nu_{in}}+\frac{k_{y}\nabla_{ey}}{\widetilde{\omega}}\right)$$
(30)

$$q(x) = -k_y^2 - \frac{k_y(cR_y/B)}{\widetilde{\omega} + i\nu_{in}} \frac{\nu_{in}}{\widetilde{\omega}} \frac{k_y n}{n} + \frac{n}{n} \frac{k_y V_{ey}}{\widetilde{\omega} + i\nu_{in}}$$

$$-\frac{k_{y}V_{ey}}{\widetilde{\omega}+iv_{in}}\frac{iv_{in}}{\widetilde{\omega}}\left(\frac{n}{n}+\frac{V_{ey}}{V_{ey}}\frac{n}{n}\frac{\omega}{\widetilde{\omega}}\right)$$
(31)

Equation (27) has a simple form, albeit Q(x) is a complicated function of x, which allows physical insight into the nature of the mode structure. As an example, if Q is real and has Q>0 for $|x|>x_0$ and Q<0 for $|x|< x_0$ then one would expect a bounded solution of $\widetilde{\phi}$ in the region $|x|< x_0$ that exponentially decays for $|x|>x_0$.

We now solve Eq. (27) numerically for a variety of conditions to better understand the influence of an inhomogeneous electric field on the $\mathbb{R} \times \mathbb{R}$ instability. In all of the cases presented, the following density profile is assumed

$$n(x) = n_0 \frac{1 + \varepsilon \tanh (x/L)}{1 - \varepsilon}$$
 (32)

where $0 \le \varepsilon < 1$, L characterizes the width of the boundary layer, and $n_0 = n$ ($x = -\infty$). By varying ε , the magnitude of the density gradient scale length L_n ($L_n = (n^-/n)^{-1}$) can be changed. That is, as $\varepsilon \neq 0$, $L_n + \infty$ (a constant density profile); as $\varepsilon + 1$, the value of $L_n + 0$ (a rapidly changing density profile). We assume $\varepsilon = 0.95$ for the results presented so that

$$(\frac{n'}{n})$$
 = 1.45 L⁻¹ at x/L = -0.9 (33)

The maximum growth rate of the instability is expected to be

$$\gamma_{\rm m} = 1.45 \ (V_{\rm o}/L)$$
 (34)

where $V_0 = cE_0/B$ and we have used Eq. (19) assuming $E_0 = E_0 \cdot e_y$.

The embient electric field is chosen to be

$$E(x) = E_x(x) \hat{e}_x + E_y \hat{e}_y$$
 (35)

where

$$\mathbf{E}(\mathbf{x} = -\mathbf{e}) = \mathbf{E} \sin \theta \, \hat{\mathbf{e}}_{\mathbf{x}} + \mathbf{E} \cos \theta \, \hat{\mathbf{e}}_{\mathbf{y}} \tag{36}$$

so that $\theta = \tan^{-1} (E_x/E_y)$ at $x = -\infty$. The influence of the x component of the electric field is then studied by varying θ , the angle between E and e_y at $x = -\infty$. Two forms of $E_x(x)$ are considered in the analysis:

$$E_{x}(x) = E_{0} \sin \theta = constant$$
 (37)

and

$$E_{x}(x) = E_{0} \sin \theta (n_{0}/n(x)) \neq constant$$
 (38)

These allow us to contrast the effects of no velocity shear and velocity shear on the instability. We comment that Eq. (38) is an equilibrium solution which satisfies $\nabla \cdot (n \ V_i) = 0$ in the strong collisional limit $v_{in} >> \omega$ (i.e., Eq. (7)).

In Fig. 3 we plot $\tilde{\gamma} = \gamma/(V_o/L)$ we kyL for $\theta = 0^\circ$ and 90° and $\tilde{v} = v/(V_o/L) = 1.0$ and 100.0, where E_x is chosen to be constant (Eq. (37)) and $V_o = cE_o/B$. A general comment on all of the curves shown is that $\tilde{\gamma}$ is an increasing function kyL, but $\tilde{\gamma}$ asymptotes to a constant value independent of kyL for $k_y^2 L^2 >> 1$. This is consistent with the predictions of local theory. The "standard" case is $\theta = 0^\circ$, that is, $\tilde{g} = E_y \hat{e}_y$ and there is no component of \tilde{g} parallel to the density gradient. For this case, two values of \tilde{v} are chosen: strong collisions ($\tilde{v} = 100.0$) and weak

Fig. 3 Plot of $\tilde{\gamma} = \gamma/(V_0/L)$ vs. k_yL for $\theta = 0^\circ$ and 90° , and for $\tilde{\nu} = \nu_{in}/(V_0/L) = 1.0$ and 100.0. The electric field R_x is assumed to be constant (Eq. (37)).

collisions ($\tilde{v} = 1.0$). As is expected, the growth rate is larger for the larger value of \tilde{v} in the short wavelength regime ($k_y L > 1$). Also, the growth rate for $\tilde{v} = 100.0$ at $k_y L = 30$ is $\tilde{\gamma} = 1.39$, and is still increasing, although slowly, as a function of $k_y L$. This value of $\tilde{\gamma}$ agrees well with the value obtained from local theory ($\tilde{\gamma} = 1.45$ from Eq. (33)). The growth rate for the weak collision case $\tilde{v} = 1.0$ asymptotes to a somewhat smaller value of $\tilde{\gamma}$ ($\tilde{\gamma} = 0.79$). However, note that the difference between the growth rates for the strong and weak collisional cases becomes smaller as $k_y L + 0$, and that the growth rates are, in fact, comparable for $k_y L = 0.1$. The "non-standard" case is $\theta = 90^\circ$, or $\tilde{g} = \tilde{g}_x = 1.0$ and the only component of \tilde{g} is along the density gradient. The major result of this limit is simply that the instability can still persist even though $\tilde{g} = 0$. The overall influences of \tilde{v} and $\tilde{g} = 0$. The overall influences of \tilde{v} and $\tilde{g} = 0$. The previous case, $\tilde{g} = 90^\circ$.

In Fig. 4 we plot $\tilde{\gamma}$ vs. k_yL for $\theta=0^\circ$ and 70° and $\tilde{\nu}=1.0$ and 100.0, but consider E_x to be a function of x as in Eq. (38) so that velocity sheared flows occur for $\theta\neq0^\circ$. The curves for $\tilde{\nu}=1.0$ and 100.0 and $\theta=0^\circ$ are shown for comparative purposes. The important results in this figure are as follows. First, the mode is stable for $k_yL \gtrsim 12$ for both the strong and weak collisional cases when $\theta=70^\circ$. This is in agreement with the conclusion of Perkins and Doles (1975); velocity shear effects tend to stabilize the short wavelength modes, those such that $k_y^2L^2 \gg 1$. The influence of shear on the long wavelength modes ($k_yL < 1$) is weakly stabilizing. Second, the difference in the growth rate curves for $\tilde{\nu}=1.0$ and 100.0 is much less than that of the case of no shear (i.e., $\theta=0$). And finally, since velocity shear can stabilize short wavelength modes before long wavelength modes, velocity

Fig. 4 Plot of $\tilde{\gamma} = \gamma/(V_0/L)$ vs. k_yL for $\theta = 0^\circ$ and 70° , and for $\tilde{v} = v_{in}/(V_0/L) = 1.0$ and 100.0. The electric field E_x is assumed to be inhomogeneous (Eq. (38)).

Fig. 5 Flot of $\tilde{Y} = Y/(V_0/L)$ vs. kyL for $\tilde{v} = v_{in}/(V_0/L) = 100.0$ and $\theta = 0^\circ$, 10° , 30° , 50° , 70° and 80° .

Fig. 6 Plot of $\tilde{\gamma} = \gamma/(V_o/L)$ vs 8 for $\tilde{\gamma} = \gamma_{in}/(V_o/L) = 100.0$, $k_yL = 1.0$ and 10.0, and $E_x = \text{cnst}$ (Eq. (37)) and $E_x \neq \text{cnst}$ (Eq. (38)).

mode? To shed light on this question, we consider the following simplified equation

$$\phi'' - [k_y^2 - ik_y \frac{k_y (cE_y/B)}{\omega - k_y V_{ey}(x)} \frac{n'}{n}] \phi = 0$$
 (39)

That is, we consider the limit $\tilde{v} \gg 1$ and retain the x-dependent, Doppler-shifted frequency $(\omega - k_y \ V_{ey}(x))$ as the only contribution of the inhomogeneous electric field profile. We neglect terms proportional to V_{ey}' , V_{ey}'' , and n''. We emphasize that Eq. (39) is not the complete mode structure equation, but is solved and contrasted to the correct solution in order to isolate a single effect of the field inhomogeneity, viz., the x dependent resonance $\omega - k_y \ V_{ey}(x)$. In Fig. 7 we plot $\tilde{\gamma}$ vs. $k_y L$ for $\theta = 70^\circ$ and E_x is given by Eq. (38). The solid curve is the solution to Eq. (27) for $\tilde{v} = 100.0$, while the dashed curve is the solution to Eq. (39). Although there is a small difference between these curves for $k_y L < 1$, the important point is that the mode is stabilized at $k_y L = 13$ in both cases. Thus, the stabilization mechanism is related to the x dependent resonance $\omega - k_y \ V_{ey}(x)$, as opposed to velocity shear effects associated with terms proportional to V_{ey}' and V_{ey}' . This is a key result of this analysis.

CONTRACTOR OF THE PROPERTY OF

We now turn our attention to the mode structure associated with the $\mathbb{E} \times \mathbb{E}$ instability, and the influence of an inhomogeneous electric field on its structure. Figure 8 is a plot of the density profile $n(x)/n_0$ (Eq. (32) with $\varepsilon = .095$) and the electric field profile $\mathbb{E}_{\mathbb{K}}(x)/\mathbb{E}_{0\mathbb{K}}$ (Eq. (38) with $\mathbb{E}_{0\mathbb{K}} = \mathbb{E}_0 \sin \theta$) versus x/L. For $\theta = 0^0$, the electric field profile is simply $\mathbb{E}_{\mathbb{K}}(x)/\mathbb{E}_{0\mathbb{K}} = 0$. We present plots of Q and $\widetilde{\phi}$ vs. x/L for these profiles. In the subsequent plots of Q and $\widetilde{\phi}$, the subscript r denotes the

Fig. 7 Plot of $\tilde{\gamma} = \gamma/(V_o/L)$ vs k_yL for $\tilde{\nu} = \nu_{in}/(V_o/L) = 100.0$ and $\theta = 70^\circ$ using Eq. (27) (solid curve) and Eq. (39) (dashed curve). The electric field E_x is assumed to be inhomogeneous (Eq. (38)).

Fig. 8 Equilibrium density (Eq. (32)) and electric field (Eq. (38)) profiles for $\varepsilon = 0.95$.

real part of Q or $\tilde{\phi}$, and i denotes the imaginary part of Q or $\tilde{\phi}$. The parameters considered for the first set of modes are $k_yL = 10.0$, $\tilde{v} = 100.0$, and $\theta = 0^{\circ}$ (Fig. 9) and $\theta = 70^{\circ}$ (Fig. 10). These modes are considered to be short wavelength modes since $k_xL \gg 1$.

Figure 9 is a plot of Q (Fig. 9a) and $\tilde{\phi}$ (Fig. 9b) versus x/L for the case of no electric field inhomogeneity ($\theta=0^\circ$ or $E_{\rm x}({\rm x})=0$). the eigenfrequency for the mode is $\tilde{\omega}_{\rm r}=0.0$ and $\tilde{\gamma}=1.329$. the important points to note are the following. First, the wave potential Q is real and is such that Q < 0 for -1.3 < x/L < -0.5 and Q > 0 otherwise. Second, the wave potential Q achieves a minimum at x/L = -0.9, the position of maximum $L_{\rm h}$ (Eq. (33)). Third, consistent with this form of Q, the wave function $\tilde{\phi}$ is a bounded mode centered about x/L = -0.9 that falls off exponentially for x/L > -0.5 and x/L < -1.3. And finally, the wave function is reasonably broad in that its half-width at half maximum (Ax) is comparable to the width of the boundary layer, i.e., Ax = L/2.

The state of the s

である。

Figure 10 is a plot of Q (Fig. 10e) and $\tilde{\phi}$ (Fig. 10b) versus x/L for the case of an inhomogeneous electric field ($\theta=70^{\circ}$ and $K_{\chi}(x)$ is shown in Fig. 8). The eigenfrequency for this case is $\tilde{w}_{\chi}=0.5307$ and $\tilde{\gamma}=0.0716$. Note that the mode has a real frequency in contrast to the previous case and that the growth rate is smaller. Other important differences between this situation and the previous one are as follows. First, the wave potential Q is shifted to a larger value of x/L. The position of the minimum value of Q_{χ} is at x/L = -0.12. Also, note that Q also has an imaginary component. Second, the wave function $\tilde{\phi}$ is the lowest order mode and has considerably more structure in x/L than the no shear case. Finally, the spatial extent of $\tilde{\phi}$ is somewhat narrower with $\Delta x = 0.1$ L.

Fig. 9 Wave potential Q and wave eigenfunction $\tilde{\phi}$ as a function of x/L. The subscripts r and i denote real and imaginary, respectively. The parameters considered are $k_y L = 10.0$, $\tilde{v} = v_{in}/(V_o/L) = 100.0$ and $\theta = 0^o$ (i.e., $E_x = 0$). The eigenfrequency is $\tilde{w}_r = 0.0$ and $\tilde{\gamma} = 1.329$. (a) Q vs. x/L. (b) $\tilde{\phi}$ vs. x/L.

Fig. 10 Wave potential Q and wave eigenfunction as a function of x/L. The subscripts r and 1 denote real and imaginary, respectively. The parameters used are $k_yL = 10.0$, $\tilde{v} = v_{in}/(\tilde{v}_0/L) = 100.0$, and $\theta = 70^\circ$ where R_x is given by Eq. (38). The eigenfrequency is $\tilde{w}_x = 0.5307$ and $\tilde{\gamma} = 0.0716$. (a) Q vs. x/L. (b) $\tilde{\phi}$ vs. x/L.

A longer wavelength mode is now considered. We choose $k_w L = 0.1$ so that $k_{\nu}L \ll 1$, but still consider $\tilde{\nu} = 100.0$ as in the short wavelength case. Figure 11 is a plot of the density profile $n(x)/n_0$ and electric field profile $E_x(x)/E_{ox}$ for the same parameters as in Fig. 8. However, the range of x/L is expanded for comparison to the broadened mode structure. Figure 12 is a plot of Q (Fig. 12a) and ϕ (Fig. 12b) for the case of no electric field inhomogeneity ($\theta = 0^{\circ}$ or $E_{-}(x) = 0$). The eigenfrequency is $\tilde{\omega}_{\mu} = 0.0$ and $\tilde{\gamma} = 0.0930$. The character of Q is considerably different from the short wavelength case (Fig. 9a). The position of the minimum of the potential well is shifted to x/L = 0.0. Moreover, a "potential anti-well" exists for $-5.0 \le x/L \le 0.0$ which tends to inhibit mode penetration in this region. The corresponding eigenfunction $\tilde{\phi}$ (Fig. 12b) is also substantially different from the short wavelength case (Fig. 9b). First, the wave function has a surface wave character in that $\tilde{\phi} = \tilde{\phi}_{\lambda}$ exp (-KX). Second, the wavefunction is asymmetrical about the position of minimum Q_{μ} , x/L = 0.0. wavefunction falls off very rapidly in the region -4.0 < x/L < 0.0 which is due to the "potential anti-well" of Q in this region. For x/L < -4.0, ϕ falls off more gradually, similar to its behavior for x/L > 10.0. And finally, the wave function is very broad, extending out to x/L = 50.0.

THE RESIDENCE OF THE PARTY OF T

Figure 13 is a plot of Q (Fig. 13a) and $\tilde{\phi}$ (Fig. 13b) versus x/L for the same parameters as Fig. 10, but now we take $\theta = 70^{\circ}$ so that the electric field is inhomogeneous (see Fig. 11). The eigenfrequency is $\tilde{\omega}_{\rm r} = 0.0057$ and $\tilde{\gamma} = 0.0314$. Although both the wave potential Q and the wave eigenfunction $\tilde{\phi}$ now have imaginary components, Q and $\tilde{\phi}$ are quite similar to the no shear case. The wave function is centered about x/L = 0.0, has an asymmetrical nature, and extends up to x/L = 50.0. Thus, the

Fig. 11 Equilibrium density (Eq. (32) and electric field (Eq. (38)) profiles for $\varepsilon = 0.95$.

Fig. 12 Wave potential Q and wave eigenfunction $\tilde{\phi}$ as a function of x/L. The subscripts r and i denote real and imaginary, respectively. The parameters considered are $k_y L = 0.1$, $\tilde{V} = V_{in}/(V_0/L) = 100.0$, and $\theta = 0^0$ (i.e., $E_x = 0$). The eigenfrequency is $\tilde{w}_r = 0.0$ and $\tilde{\gamma} = 0.0930$. (a) Q vs. x/L. (b) $\tilde{\phi}$ vs. x/L.

Fig. 13 Wave potential Q and wave eigenfunction $\tilde{\phi}$ as a function of x/L. The subscripts r and i denote real and imaginary, respectively. The parameters considered are $k_y L = 0.1$, $\tilde{v} = v_{in}/(V_0/L) = 100.0$, and $\theta = 70^\circ$ where E_x is given by Eq. (38). The eigenfrequency is $\tilde{w}_x = 0.0057$ and $\tilde{\gamma} = 0.0314$. (a) Q vs. x/L. (b) $\tilde{\phi}$ vs. x/L.

influence of the electric field inhomogeneity on the wave structure in the long wavelength regime $(k_yL \ll 1)$ is much less pronounced than that in the short wavelength regime $(k_yL \gg 1)$. However, the electric field inhomogeneity does reduce the growth rate of the mode significantly.

Finally we present Fig. 14 which is a marginal stability curve (i.e., $\gamma = 0$) of θ vs. k_yL where we have taken $\tilde{\nu} = 1.0$ (dashed curve) and and 100.0 (solid curve). Modes are stable ($\gamma < 0$) and unstable ($\gamma > 0$) above and below each of the curves, respectively. The ratio $E_{\chi}(x_0)/E_{\chi}$ is for the case $\tilde{\nu} = 100.0$ and has the following meaning. It is the ratio of E_{χ} to E_{χ} evaluated at $\chi = \chi_0$, where χ_0 is the position of mode localization. The position of mode localization is defined as the portion of the minimum value of Q_{χ} , which corresponds to the maximum value of ϕ . For the parameters chosen, it is found that $\chi_0 = 0$. The marginal stability criterion is then given by

$$\frac{E_{x}(x_{0})}{E_{y}} > 0.05 \tan \theta_{ms}$$
 (40)

where θ_{ms} is the value of θ at marginal stability and we have used Eqs. (32) and (38) with $\epsilon=0.95$. From Fig. 14 we find that

$$\theta_{ms} = 88 - 1.4 \text{ kyL}$$
 (41)

where θ_{ms} is measured in degrees. Substituting Eq. (41) into Eq. (40), we obtain

$$\frac{E_{x}(x_{0})}{E_{y}} > \frac{0.05}{\tan(1.4k_{y}L)}$$
 (42)

Fig. 14 Marginal stability curve of θ vs. k_yL for $\tilde{v}=1.0$ (dashed curve) and $\tilde{v}=100.0$ (solid curve). The mode is stable ($\gamma<0$) and unstable ($\gamma>0$) above and below each of these curves, respectively. The ratio $R_x(x_0)/R_y$ vs. k_yL is for the case $\tilde{v}=100.0$ where $x_0/L\simeq0.0$ is the position of mode localization. In all of these curves, Eq. (38) has been used for $E_x(x)$.

OT

$$\frac{E_{\mathbf{x}}(\mathbf{x}_0)}{E_{\mathbf{y}}} > \frac{2.05}{k_{\mathbf{y}}L}$$
 (43)

for $k_y L \ll 36.0$. Note that Eq. (43) is qualitatively consistent with the result of Perkins and Doles (1975) in that there is an inverse relationship between $E_x(x_0)/E_y$ and k_y . Also, Eq. (43) is also quantitatively consistent (see Eq. (24)) since D > L for the profiles used. Finally, as θ approaches 90° , i.e., $E_y + 0$, the wavenumber of the last unstable mode approaches 0. There is no instability at $\theta = 90^\circ$; this has been demonstrated analytically by Perkins et al. (1973).

IV. DISCUSSION

We have presented a general theory of the $E \times E$ instability allowing for an arbitrary (1) density profile, (2) inhomogeneous electric field parallel to the density gradient, and (3) ratio of the collision frequency to the eigenfrequency (i.e., v_{in}/ω). A differential equation is derived which describes the structure of the mode in the direction of the inhomogeneity, which we have considered to be the x direction. The theory is restricted to wave numbers such that $k_y L \ll \Omega_i/v_{in}$ and $k_y L \ll \Omega_i/\omega$; since it has also been assumed that $v_{in}/\Omega_i \ll 1$ and $\omega/\Omega_i \ll 1$ this restriction is not important. This work is basically an extension of the analysis of Perkins and Doles (1975), whose theory is restricted to the regime $v_{in}/\omega \gg 1$ and $k_y L \gg 1$, and considers a specific density and electric field profile. The principal results of this study are as follows.

- 1. For a constant electric field profile, instability persists even when $E_y = 0$ ($\theta = 90^\circ$). In fact, instability also occurs for $E_y < 0$ ($\theta > 90^\circ$) when $\partial n/\partial x > 0$; this is contrary to the simple one dimensional result (i.e., $k = k_y \hat{e}_y$) which requires $E_y \partial n/\partial x > 0$ for instability. Thus, two-dimensional mode structure (i.e., $k = k_x \hat{e}_x + k_y \hat{e}_y$) is crucial to the instability (Eq. (18)) (Linson and Workman, 1971).
- 2. For an inhomogeneous electric field, an inhomogeneous $\mathbb{E} \times \mathbb{B}$ velocity occurs $(V_y(x) = -cE_x(x)/B)$ which has a stabilizing influence on the mode. Moreover, the short wavelength modes $(k_yL >> 1)$ are preferentially stabilized over long wavelength modes $(k_yL \lesssim 1)$. This result is consistent with the work of Perkins and Doles (1975).

- a. The functional form of $E_{\chi}(x)$ is not critical to stabilization of the mode. In the absence of any plasma sources or sinks, the ion continuity equation gives the equilibrium relationship oetween the density (n(x)) and the electric field $E_{\chi}(x)$, as given by Eq. (7) (also, see Fig. 8). Perkins and Doles (1975) use this relationship in their analysis. However, we have considered other electric field profiles (e.g., $E_{\chi}(x) \ll n(x)$ and $E_{\chi}(x) \ll tanh(x)/n(x)$). We have found that the instability is still stabilized by the velocity inhomogeneity, again preferentially stabilizing the shorter wavelength modes, but that the marginal stability curves are different from Fig. (13).
- b. The mode is stabilized because of the x-dependent resonance $\omega k_y V_{ey}(x)$ in Eq. (15). Terms proportional to $\partial V_{ey}/\partial x$ and $\partial^2 V_{ey}/\partial x^2$ are not important for stabilization.
- c. Ferkins et al. (1973) have shown analytically that the mode is stable for $E_y = 0$ and E_x given by Eq. (21). The numerical results presented here are consistent with this conclusion. However, we add that as $E_y + 0$ then $k_y L + 0$. This is clear from Fig. (14) by noting that $k_y L + 0$ as $\theta + 90^\circ$.
- d. In general, it is found that as $\nu_{\rm in}$ decreases the growth rate of the mode decreases; this is expected from linear theory (Eqs. (19) and (20)). However, in the case of an inhomogeneous electric field, the difference in growth rates between the strong and weak collisional limits considered is not significant (see Fig. (4)). Furthermore, the stabilization criterion is not sensitive to $\nu_{\rm in}$ (see Fig. (14)).

These results are applicable to the development of the $\mathbb{E} \times \mathbb{E}$ instability in both barium releases and the high latit, 4e F region ionosphere. First, the important aspects of an inhomogeneous electric

field on barium cloud striations has been adequately addressed by Perkins and Doles (1975). In particular, they note that (1) the back side of a plasma cloud must steepen sufficiently so that it is almost onedimensional to allow the mode to grow (i.e., $\mathbb{E} \cong \mathbb{E}_{v} e_{v}$) and (2) the stabilization of the mode due to $E_{\mu}(x)$ may explain why the sides of a plasma cloud do not become unstable. Furthermore, from our studies, we might hypothesize that the "freezing" phenomenon in plasma cloud striations (see McDonald et al., 1981) could be due to shear stabilization effects, since shear stabilization acts preferentially on short wavelength modes, i.e., $k_vL \gg 1$, but not on long wavelength modes, i.e., $k_vL \le 1$. Second, the role of an inhomogeneous electric field the E × B instability can be very important in the structuring of plasma "blobs" observed in the high latitude F region. Experimental observations (Vickrey et al., 1980; Tsunoda and Vickrey, 1982) indicate structuring in both the east-west and north-south directions. Moreover, small-scale structuring of the walls of the "blobs" have also been observed and is attributed to the $E \times E$ instability and/or the current convective instability. The plasma configuration is not well-known but the morphology of the "blobs" appears to be very complex. Not only are there inhomogeneities anticipated in the electric field, but there are also neutral wind effects, field-aligned plasma currents, and possible coupling effects between the E and F regions. A complete theoretical treatment incorporating these effects is beyond the scope of this paper. However, the results of this analysis strongly suggest that in order for the $\underline{E} \times \underline{B}$ drift instability to be a viable candidate for structuring in the high latitude F region, then the ambient electric field must be orthogonal or nearly orthogonal to the density gradient. A more complete

discussion of this problem will be definfluences of a field-aligned current into this analysis.

ACKNOWLE discussion of this problem will be deferred to a later report in which the influences of a field-aligned current and neutral wind are incorporated

ACKNOWLEDGMENTS

This work has been supported by the Defense Nuclear Agency and the Office of Naval Research.

CONTRACTOR OF STREET, STREET,

REFERENCES

- Chaturvedi, P.K. and S.L. Ossakov, "Nonlinear Stabilization of the E x B Gradient Drift Instability in Ionospheric Plasma Clouds," J. Geophys. Res., 84, 419, 1979.
- Hoh, F.C., "Instability of Penning-Type Discharges," Phys. Fluids, 6, 1184, 1963.
- Keskinen, M.J. and S.L. Ossakow, "Effect of Different Initial Conditions on the Evolution of the E x B Gradient Drift Instability in Ionospheric Plasma Clouds," NRL Memo Report 4490, April 1981.
- Linson, L.M. and J.B. Workman, "Formation of Striations in Ionospheric Plasma Clouds," J. Geophys. Res., 75, 3211, 1970.
- McDonald, B.E., S.L. Ossakow, S.T. Zalesak, and N.J. Zabusky, "Scale Sizes and Lifetimes of F Region Plasma Cloud Striations as Determined by the Condition of Marginal Stability," <u>J. Geophys. Res.</u>, <u>86</u>, 5775, 1981.
- Ossakow, S.L., P.K. Chaturvedi, and J.B. Workman, "High Altitude Limit of the Gradient Drift Instability," J. Geophys. Res., 83, 2691, 1978.
- Ossakow, S.L., "Ionospheric Irregularities," Rev. Geophys. Space Phys., 17, 521, 1979.
- Ossakow, S.L., M.J. Keskinen, and S.T. Zalesak, "Ionospheric Irregularity Physics Modelling," AIAA 20th Aerospace Sciences Meeting, AIAA-82-0147, 1982.
- Perkins, F.W., W.J. Zabusky, and J.H. Doles III, "Deformation and Striation of Plasma Clouds in the Ionosphere, 1," J. Geophys. Res., 78, 697, 1973.

Perkins, F.W. and J.H. Doles III, "Velocity Shear and the $E \times B$ Instability," J. Geophys. Res., 80, 211, 1975.

- Scannapieco, A.J., S.L. Ossakow, S.R. Goldman, and J.M. Pierre, "Plasma Cloud Late Time Striation Spectra," J. Geophys. Res., 81, 6037, 1976.
- Shiau, J.N. and A. Simon, "Onset of Strictions in Barium Clouds," Phys. Rev. Lett., 29, 1664, 1972.
- Simon, A., "Instability of a Partially Ionized Plasma in Crossed Electric and Magnetic Fields," Phys. Fluids, 6, 382, 1963.
- Simon, A., "Growth and Stability of Artificial Ion Clouds in the Ionosphere," J. Geophys. Res., 75, 6287, 1970.
- Tsunoda, R.T. and J.F. Vickrey, "Evidence of East-West Structure in Large-Scale F-Region Plasma Enhancements in the Auroral Zone," submitted to J. Geophys. Res., 1982.
- Vickrey, J.F., C.L. Rino, and T.A. Potemra, "Chatanika/Triad Observations of Unstable Ionization Enhancements in the Auroral F-Region,"

 Geophys. Res. Lett., 7, 789, 1980.
- Volk, H.J., and G. Haerendel, "Striations in Ionospheric Ion Clouds, 1,"

 J. Geophys. Res., 76, 4541, 1971.
- Zabusky, N.J., J.H. Doles III, and F.W. Perkins, "Deformation and Striation of Plasma Clouds in the Ionosphere, 2. Numerical Simulation of a Monlinear Two-Dimensional Model," J. Geophys. Res., 78, 711, 1973.

 \supset

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE COMM, CMD, CONT 7 INTELL. WASHINGTON, D.C. 20301 OICY ATTN J. BABCOCK OICY ATN M. EPSTEIN

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
OICY ATTN C-650
OICY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE BA10
01CY ATTN CODE R812

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
WASHINGTON, D.C. 20305
(ADR CHWDI: ATTN CODE 240 FOR)
01CY ATTN CODE 1018

DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION ALEXANDRIA, VA. 22314 02CY

DIRECTOR
DEPENSE MUCLEAR AGENCY
WASHINGTON, D.C. 20305
O1CY ATTN STVL
O4CY ATTN TITL
O1CY ATTN DDST
O3CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
O1CY ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
OICY ATTN J-3 WAMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OPFUTT AFB
OMAHA, NB 68113
OICY ATTN JLTW-2
OICY ATTN JPST G. GOETZ

CHIEF
LIVERNORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERNORE, CA 94550
OICY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG DEPARTMENT OF DEFENSE WASHINGTON, D.C. 20301 OICY ATTN STRATEGIC & SPACE SYSTEMS (OS)

WANCCS SYSTEM ENGINEERING ORG WASHINGTON, D.C. 20305 OICY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
OICY ATTN DELAS—EO F. NILES

DIRECTOR BMD ADVANCED TECH CTR HUNTSVILLE OFFICE P.O. BOX 1500 HUNTSVILLE, AL 35807 Olcy ATTN ATC-T MELVIN T. CAPPS Olcy ATTN ATC-O W. DAVIES OICY ATTN ATC-R DON RUSS

PROGRAM MANAGER BMD PROGRAM OFFICE 5001 EISENHOWER AVENUE ALEXANDRIA, VA 22333 OICY ATTN DACS-BMT J. SHEA

CHIEF C-E- SERVICES DIVISION U.S. ARMY COMMUNICATIONS CMD PENTAGON RM 1B 269 WASHINGTON, D.C. 20310 OICY ATTN C- E-SERVICES DIVISION

COMMANDER

FRADCOM TECHNICAL SUPPORT ACTIVITY DEPARTMENT OF THE ARMY FORT MORMOUTH, N.J. 07703 OICY ATTN DRSEL-NL-RD H. BENNET OICY ATTN DRSEL-PL-ENV H. BONKE OICY ATTN J.E. QUIGLEY

COMMANDER

HARRY DIAMOND LABORATORIES DEPARTMENT OF THE ARMY 2800 POWDER MILL ROAD ADELPHI, MD 20783

(CMVDI-INNER ENVELOPE: ATTN: DELHD-RBH)

OICY ATTN DELHD-TI M. WEINER OICY ATTN DELHD-RB R. WILLIAMS OICY ATTN DELHD-WP F. WIMENITZ OICY ATTN DELHD-NP C. MOAZED

COMMANDER

U.S. ARMY COMM-ELEC ENGRG INSTAL AGY FT. HUACHUCA, AZ 85613 OICY ATTN CCC-EMEO GEORGE LANE

COMMANDER

U.S. ARMY FOREIGN SCIENCE & TECH CTR 220 7TH STREET, NE CHARLOTTESVILLE, VA 22901 OICY ATTN DRXST-SD OICY ATTN R. JOHES

COMMANDER

U.S. ARMY MATERIAL DEV & READINESS CHD 5001 EISENHOWER AVENUE ALEXANDRIA, VA 22333 OICY ATTH DRCLDC J.A. BENDER

COMMANDER

U.S. ARMY NUCLEAR AND CHEMICAL AGENCY 7500 BACKLICK ROAD **BLDG 2073** SPRINGFIELD, VA 22130 OICY ATTN LIBRARY

DIRECTOR

U.S. ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MD 21005 OICY ATTN TECH LIBRARY EDWARD BAICY

COMMANDER

U.S. ARMY SATCOM AGENCY FT. MONMOUTH, NJ 07703 OICY ATTN DOCUMENT CONTROL

COMMANDER

U.S. ARMY MISSILE INTELLIGENCE AGENCY REDSTONE ARSENAL, AL 35809 OICY ATTN JIM GAMBLE

DIRECTOR

U.S. ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY WHITE SANDS MISSILE RANGE, NM 88002 Olcy Attn Ataa-sa Olcy Attn TCC/F. Payan Jr. Olcy Attn Atta-tac LTC J. Hesse

COMMANDER

NAVAL ELECTRONIC SYSTEMS COMMAND WASHINGTON, D.C. 20360 Olcy ATTN NAVALEX 034 T. HUGHES
OLCY ATTN PME 117
OLCY ATTN PME 117-T
OLCY ATTN CODE 5011

COMMANDING OFFICER NAVAL INTELLIGENCE SUPPORT CTR 4301 SUITLAND ROAD, BLDG. 5 WASHINGTON, D.C. 20390
OICY ATTN MR. DUBBIN STIC 12
OICY ATTN NISO-50
OICY ATTN CODE 5404 J. GALET

COMMANDER

NAVAL OCCEAN SYSTEMS CENTER SAN DIEGO, CA 92152 03CY ATTN CODE 532 W. HOLER 01CY ATTN CODE 0230 C. BAGGETT OICY ATTN CODE 81 R. EASTMAN

DIRECTOR **NAVAL RESEARCH LABORATORY** WASHINGTON, D.C. 20375 OlCY ATTN CODE 4700 S. L. Ossakow 26 CYS IF UNCLASS. 1 CY IF CLASS) OICY ATTN CODE 4701 JACK D. BROWN OLCY ATTN CODE 4780 BRANCH HEAD (150 CYS IF UNCLASS, 1 CY IF CLASS) OLCY ATTN CODE 7500 OICY ATTN CODE 7550 OLCY ATTN CODE 7580

OICY ATTN CODE 7551 OICY ATTN CODE 7555 OICY ATTN CODE 4730 E. MCLEAN

OICY ATTN CODE 4187

COMMANDER

NAVAL SEA SYSTEMS COMMAND WASHINGTON, D.C. 20362 OICY ATTN CAPT R. PITKIN

COMMANDER

NAVAL SPACE SURVEILLANCE SYSTEM DAHLGREN, VA 22448 OICY ATTN CAPT J.H. BURTON

OFFICER-IN-CHARGE NAVAL SURFACE WEAPONS CENTER WHITE OAK, SILVER SPRING, MD 20910 OICY ATTN CODE F31

DIRECTOR

STRATEGIC SYSTEMS PROJECT OFFICE DEPARTMENT OF THE NAVY WASHINGTON, D.C. 20376 OICY ATTN NSP-2141 OICY ATTN NSSP-2722 FRED WIMBERLY

COMMANDER

NAVAL SURFACE WEAPONS CENTER DAHLGREN LABORATORY DAHLGREN, VA 22448 OICY ATTN CODE DF-14 R. BUTLER

OFFICER OF NAVAL RESEARCH

ARLINGTON, VA 22217

OICY ATTN CODE 465

O1CY ATTN CODE 461 O1CY ATTN CODE 402 O1CY ATTN CODE 420

OICY ATTN CODE 421

COMMANDER

AEROSPACE DEFENSE COMMAND/DC DEPARTMENT OF THE AIR FORCE ENT AFB, CO 80912 OICY ATTN DC MR. LONG

COMMANDER

AEROSPACE DEFENSE COMMAND/XPD DEPARTMENT OF THE AIR FORCE ENT AFB, CO 80912 OICY ATTN XPDQQ OICY ATTN XP

AIR FORCE GEOPHYSICS LABORATORY HANSCOM AFB, MA 01731

O1CY ATTN OPR HAROLD GARDNER

O1CY ATTN LEB KENNETH S.W. CHAMPION

O1CY ATTN OPR ALVA T. STAIR

O1CY ATTN PHP JULES AARONS

O1CY ATTN PHD JURGEN BUCHAU

O1CY ATTN PHD JOHN P. MULLEN

AF WEAPONS LABORATORY

KIRTLAND AFT, NM 87117

01CY ATTN SUL 01CY ATTN CA ARTHUR H. GUENTHER 01CY ATTN NTYCE 1LT. G. KRAJEI

AFTAC

PATRICK AFB, FL 32925 Olcy ATTN TP/MAJ WILEY Olcy ATTN TN

AIR FORCE AVIONICS LABORATORY WRIGHT-PATTERSON AFB, OH 45433

OICY ATTN AAD WADE HUNT OICY ATTN AAD ALLEN JOHNSON

DEPUTY CHIEF OF STAFF RESEARCH, DEVELOPMENT, & ACQ DEPARTMENT OF THE AIR FORCE WASHINGTON, D.C. 20330 OLCY ATTN APRDO

HEADOUATERS

ELECTRONIC SYSTEMS DIVISION/XR DEPARTMENT OF THE AIR FORCE HANSCOM AFB, NA 01731 OICY ATTN XR J. DEAS

HEADOUATERS

ELECTRONIC SYSTEMS DIVISION/YSEA DEPARTMENT OF THE AIR FORCE HANSCOM AFB, MA 01732 OICY ATTN YSEA

HEADQUATERS

ELECTRONIC SYSTEMS DIVISION/DC DEPARTMENT OF THE AIR FORCE HANSCOM AFB, MA 01731 OICY ATTN DCKC MAJ J.C. CLARK

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
OICY ATTN NICD LIBRARY
OICY ATTN ETDP 5. BALLARD

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
OICY ATTH DOC LIBRARY/TSLD
OICY ATTH OCSE V. COYNE

SAMSO/SZ
POST OFFICE SOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
(SPACE DEFENSE SYSTEMS)
01CY ATTN SZJ

STRATEGIC AIR COMMAND/XPFS
OFFUTT AFB, NB 68113
OICY ATTN XPFS MAJ B. STEPHAN
OICY ATTN ADWATE MAJ BRUCE BAUER
OICY ATTN NRT
OICY ATTN DOK CHIEF SCIENTIST

SAMSO/SK P.O. BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 01CY ATTH SKA (SPACE COMM SYSTEMS) M. CLAVIN

SAMSO/MN MORTON AFB, CA 92409 (MINUTEMAN) OICY ATTN MORE LITC KERNEDY

COMMANDER
ROSS AIR DEVELOPMENT CRITER, AFSC
RASSCON AFS, NA 01731
01CY ATTW EEP A. LORENTZEN

DEPARTMENT OF ENERGY
LIBRARY ROOM G-042
WASHINGTON, D.G. 20545
OLGY ATTN DOC CON FOR A. LABOWITZ

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P.O. BOX 5400
ALBUQUERQUE, NM 87115
OICY ATTH DOC CON FOR D. SHERMOOD

EGEG, INC. LOS ALAMOS DIVISION P.O. BOX 809 LOS ALAMOS, NM 85544 OICY ATTN DOC CON FOR J. BREEDLOVE

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
OLCY ATTN DOC CON FOR TECH INFO DEPT
OLCY ATTN DOC CON FOR L-389 R. OTT
OLCY ATTN DOC CON FOR L-31 R. HAGER
OLCY ATTN DOC CON FOR L-46 F. SEWARD

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
OICY ATTN DOC CON FOR J. WOLCOTT
OICY ATTN DOC CON FOR R.F. TASCHEK
OICY ATTN DOC CON FOR E. JONES
OICY ATTN DOC CON FOR J. NALIK
OICY ATTN DOC CON FOR R. JEFFRIRS
OICY ATTN DOC CON FOR J. ZIMN
OICY ATTN DOC CON FOR P. KEATON
OICY ATTN DOC CON FOR P. WESTERVELT

SANDIA LABORATORIES
P.O. BOX 5800
ALBUQUERQUE, IM 87115
OICY ATTN DOC CON FOR W. BROWN
OICY ATTN DOC CON FOR A. THORNB ROUGH
OICY ATTN DOC CON FOR T. WRIGHT
OICY ATTN DOC CON FOR D. DAHLGREN
OICY ATTN DOC CON FOR 3141
OICY ATTN DOC CON FOR SPACE PROJECT DIV

SANDIA LABORATORIES
LIVERMORE LABORATORY
P.O. BOX 969
LIVERMORE, CA 94550
OICY ATTN DOC CON FOR B. MURPHEY
OICY ATTN DOC CON FOR T. COOK

OFFICE OF MILITARY APPLICATION DEPARTMENT OF ENERGY WASHINGTON, D.C. 20545 OICY ATTN DOC CON DR. YO SONG

OTHER GOVERNMENT

DEPARTMENT OF CONSTRUCE
MATIONAL BUREAU OF STANDARDS
MASHINGTON, D.C. 20234
(ALL CORRES: ATTN SEC OFFICER FOR)
01CY ATTN R. HOORE

INSTITUTE FOR TELECOM SCIENCES NATIONAL TELECOMMUNICATIONS & INFO ADMIN BOULDER, CO 80303

OICY ATTN A. JEAN (UNCLASS ONLY) OICY ATTN W. UTLAUT

OICY ATTN D. CROWNIE

OICY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN ENVIRONMENTAL RESEARCH LABORATORIES DEPARTMENT OF COMMERCE BOULDER, CO 80302 OICY ATTH R. GRUBB OICY ATTH AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION P.O. BOX 92957 LOS AMGELES, CA 90009 OICY ATTN I. GARFUNKEL
OICY ATTN T. SALMI
OICY ATTN V. JOSEPHSON
OICY ATTN S. BOWER
OICY ATTN N. STOCKHELL
OICY ATTN D. OLSEN

AMALYTICAL SYSTEMS ENGINEERING CORP 5 OLD CONCORD ROAD BURLINGTON, MA 01803 OICY ATTH RADIO SCIENCES

BERKELEY RESEARCH ASSOCIATES, INC. P.O. BOX 983 BERKELEY, CA 94701 OLCY ATTH J. WORKMAN OLCY ATTH C. PRETTIE

BOEING COMPANY, THE P.O. BOX 3707 SEATTLE, WA 98124
OICY ATTW G. KEISTER
OICY ATTW D. MURRAY
OICY ATTW G. HALL OICY ATTN J. KENNEY

BROWN ENGINEERING COMPANY, INC. CURSINGS RESEARCH PARK HUNTSVILLE, AL 35007 OICY ATTN ROMEO A. DELIBERIS

CALIFORNIA AT SAN DIEGO, UNIV OF P.O. BOX 6049 SAN DIEGO, CA 92106

CHARLES STARK DRAPER LABORATORY, INC. 555 TECHNOLOGY SQUARE CAMBRIDGE, MA 02139 OICY ATTN D.B. COX OlCY ATTN J.P. GILMORE

COMSAT LABORATORIES LINTHICUM ROAD CLARESBURG, MD 20734 OICY ATTN G. HYDE

CORNELL UNIVERSITY DEPARTMENT OF ELECTRICAL ENGINEERING ITHACA, NY 14850 OICY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC. BOX 1359 RICHARDSON, TX 75080 OLCY ATTN H. LOGSTON OICY ATTN SECURITY (PAUL PHILLIPS)

ESL, INC. 495 JAVA DRIVE SUNNYVALE, CA 94086 Olcy Attn J. Roberts Olcy Attn James Marshall

GENERAL ELECTRIC COMPANY SPACE DIVISION VALLEY FORGE SPACE CENTER GODDARD BLVD KING OF PRUSSIA P.O. BOX 8555 PHILADELPHIA, PA 19101 OICY ATTN M.H. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY P.O. BOX 1122 SYRACUSE, NY 13201 OICY ATTN P. REIBERT

GENERAL BLECTRIC TECH SERVICES CO. . INC. HMES COURT STREET SYRACUSE, NY 13201 OICY ATTH G. MILLMAN

GENERAL RESEARCH CORPORATION SANTA BARBARA DIVISION P.O. BOX 6770 SANTA BARBARA, CA 93111 OLCY ATTH JOHN ISE, JR. OLCY ATTH JOEL GARBARINO

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATTN T.N. DAVIS (UNCLASS ONLY)
01CY ATTN TECHNICAL LIBRARY
01CY ATTN NEAL BROWN (UNCLASS ONLY)

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
01CY ATIN MARSHALL CROSS

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF 107 COBLE HALL 150 DAVENPORT HOUSE CHAMPAIGN, IL 61820 (ALL CORRES ATTN DAN MCCLELLAND) 01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES
400 ARMY-NAVY DRIVE
ARLINGTON, VA 22202
01 CY ATTN J.M. AEIN
01 CY ATTN ERNEST BAUER
01 CY ATTN HANS WOLFARD
01 CY ATTN JOEL BENGSTON

INTL TEL 4 TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
01CY ATTN TECHNICAL LIBRARY

JAYCOR
11011 TORREYANA ROAD
P.O. BOX 85154
SAN DIEGO, CA 92138
01CY ATTW J.L. SPERLING

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, HD 20707
OLCY ATTH DOCUMENT LIBRARIAN
OLCY ATTH THOMAS POTENTA
OLCY ATTH JOHN DASSOULAS
OLCY ATTH DR. DONALD J. WILLIAMS

KAMAN SCIENCES CORP P.O. BOX 7463 COLORADO SPRINGS, CO 80933 O1CY ATIN T. MEAGHER

KAMAN TEMPO-CENTER FOR ADVANCED STUDIES 816 STATE STREET (P.O DRAWER QQ) SANTA BARBARA, CA 93102 01CY ATIN DASIAC 01CY ATIN TIM STEPHANS 01CY ATIN WARREN S. KNAPP 01CY ATIN WILLIAM MCNAMARA 01CY ATIN B. GAMBILL

LINKABIT CORP 10453 ROSELLE SAN DIEGO, CA 92121 01CY ATTN IRWIN JACOBS

LOCKHEED MISSILES & SPACE CO., INC P.O. BOX 504 SUNNYVALE, CA 94088 O1CY ATTN DEPT 60-12 O1CY ATTN D.R. CHURCHILL

LOCKHEED MISSILES & SPACE CO., INC.

3251 HANOVER STREET

PALO ALTO, CA. 94304

01CY ATIN MARTIN WALT DEPT 52-12

01CY ATIN W.L. IMHOF DEPT 52-12

01CY ATIN RICHARD G. JOHNSON DEPT 52-12

01CY ATIN J.B. CLADIS DEPT 52-12

LOCKHEED MISSILE & SPACE CO., INC.
HUNTSVILLE RESEARCH & ENGR. CTR.
4800 BRADFORD DRIVE
HUNTSVILLE, AL 35807
ATIN DALE H. DIVIS

MARTIN MARIETTA CORP ORLANDO DIVISION P.O. BOX 5837 ORLANDO, FL 32805 O1CY ATTN R. HEFFNER

M.I.T. LINCOLN LABORATORY
P.O. BOX 73
LEXINGTON, MA 02173
O1CY ATTN DAVID M. TOWLE
O1CY ATTN P. WALDRON
O1CY ATTN L. LOUGHLIN
O1CY ATTN D. CLARK

MCDONNEL DOUGLAS CORPORATION 5301 BOLSA AVENUE HUNTINGTON BRACH, CA 92647 Olcy Atin N. Harris
Olcy Atin J. Moule
Olcy Atin J. Moule
Olcy Atin George Mroz
Olcy Atin W. Olson
Olcy Atin R.W. Halprin
Olcy Atin Technical Library Services

MISSION RESEARCH CORPORATION 735 STATE STREET

SANTA BARBARA, CA 93101

ANTA BARBARA, CA 93101
01CY ATTN P. FISCHER
01CY ATTN W.F. CREVIER
01CY ATTN STEVEN L. GUTSCHE
01CY ATTN D. SAPPENFIELD
01CY ATTN R. BOGUSCH
01CY ATTN R. HENDRICK
01CY ATTN RALPH KILB
01CY ATTN DAVE SONLE

Olcy Attn F. Fajen Olcy Attn M. Scheibe Olcy Attn Conrad L. Longmire

OLCY ATTN WARREN A. SCHLUETER

MITRE CORPORATION, THE P.O. BOX 208

BEDFORD, MA 01730

OLCY ATTN JOHN MORGANSTERN OLCY ATTN G. HARDING OLCY ATTN C.E. CALLAHAN

MITRE CORP WESTGATE RESEARCH PARK 1820 DOLLY MADISON BLVD MCLEAN, VA 22101

OICY ATTN W. HALL

OLCY ATTN W. POSTER

PACIFIC-SIERRA RESEARCH CORP 1456 CLOVERFIELD BLVD. SANTA MONICA, CA 90404 Olcy ATTN E.C. FIELD, JR.

PENNSYLVANIA STATE UNIVERSITY IONOSPHERE RESEARCH LAB 318 ELECTRICAL ENGINEERING EAST (NO CLASS TO THIS ADDRESS) OLCY ATTN ICHOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC. 442 MARRETT ROAD LEXINGTON, MA 02173 OLCY ATTN IRVING L. KOPSKY PHYSICAL DYNAMICS, INC. P.O. BOX 3027 BELLEVUE, WA 98009 OlCY ATTN E.J. FREMOUN

PHYSICAL DYNAMICS, INC. P.O. BOX 10367 OAKLAND, CA 94610 ATTN A. THOMSON

R & D ASSOCIATES P.O. BOX 9695 MARINA DEL REY, CA 90291 Olcy Atin Forrest Gilmore
Olcy Atin Bryan Gabbard
Olcy Atin William B. Wright, Jr.
Olcy Atin William B. Wright, Jr.
Olcy Atin Robert F. Lelevier
Olcy Atin William J. Karzas
Olcy Atin H. Ory
Olcy Atin C. Macdonald OICY ATTN R. TURCO

RAND CORPORATION, THE 1700 MAIN STREET SANTA MONICA, CA 90406 OICY ATTN CULLEN CRAIN OICY ATTN ED BEDROZIAN

> RAYTHEON CO. 528 BOSTON POST BOAD SUDBURY, MA 01776 OICY ATTH BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE 80 WEST END AVENUE NEW YORK, NY 10023 OLCY ATTN VINCE TRAPANI

SCIENCE APPLICATIONS, INC. P.O. BOX 2351 LA JOLLA, CA 92038 Olcy attr lewis M. Lidison Olcy attr daniel A. Hamlin OICY ATTN E. FRIEMAN OLCY ATTN E.A. STRAKER OICY ATTN CURTIS A. SMITH OICY ATTN JACK HCDOUGALL

SCIENCE APPLICATIONS, INC 1710 GOODRIDGE DR. MCLEAN, VA 22102 ATTN: J. COCKAYNE

SRI INTERNATIONAL 333 RAVENSWOOD AVENUE MENLO PARK, CA 94025

Olcy Atin Donald Heilson Olcy Atin Alan Buens Olcy Atin G. Smith

OLCY ATTN L.L. COBB

OICY ATTN DAVID A. JOHNSON

01CY ATTN WALTER G. CHESNUT

OICY ATTN CHARLES L. RINO

OLCY ATTN WALTER JAYE OICY ATTN M. BARON

O1CY ATTN RAY L. LEADABRAND

OLCY ATTN G. CARPENTER

01CY ATTN G. PRICE
01CY ATTN J. PETERSON
01CY ATTN R. HAKE, JR.
01CY ATTN V. GONZALES

OICY ATTN D. MCDANIEL

STEWART RADIANCE LABORATORY UTAH STATE UNIVERSITY 1 DE ANGELO DRIVE BEDFORD, MA 01730 OICY ATTN J. ULWICK

TECHNOLOGY INTERNATIONAL CORP 75 WIGGINS AVENUE BEDFORD, MA 01730 OICY ATTN W.P. BOQUIST

TRW DEFENSE & SPACE SYS GROUP ONE SPACE PARK REDONDO BEACH, CA 90278 OICY ATTN R. K. PLEBUCH OICY ATTN S. ALTSCHULER OICY ATTN D. DEE

VISIDYNE SOUTH BEDFORD STREET BURLINGTON, MASS 01803 Olcy ATTN W. REIDY Olcy ATTN J. CARPENTER OICY ATTN C. HUMPHREY

IONOSPHERIC MODELING DISTRIBUTION LIST (UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE:

NAVAL RESEARCH LABORATORY

WASHINGTON, D.C. 20375

TO A STATE OF THE PARTY OF THE

DR. P. MANGE - CODE 4101

DR. R. MEIER - CODE 4141

DR. E. SZUSZCZEWICZ - CODE 4187

DR. J. GOODMAN - CODE 4180

DR. R. RODRIGUEZ - CODE 4187

CODE 2628 - 20CY

A.F. GEOPHYSICS LABORATORY

L.G. HANSCOM FIELD

BEDFORD, MA 01730

DR. T. ELKINS

DR. W. SWIDER

MRS. R. SAGALYN

DR. J.M. FORBES

DR. T.J. KENESHEA

DR. J. AARONS

DR. H. CARLSON

DR. J. JASPERSE

CORNELL UNIVERSITY

ITHACA, NY 14850

DR. W.E. SWARTZ

DR. R. SUDAN

DR. D. FARLEY

DR. M. KELLEY

HARVARD UNIVERSITY

HARVARD SQUARE

CAMBRIDGE, MA 02138

DR. M.B. McELROY

DR. R. LINDZEN

INSTITUTE FOR DEFENSE ANALYSIS

400 ARMY/NAVY DRIVE

ARLINGTON, VA 22202

DR. E. BAUER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PLASMA FUSION CENTER

LIBRARY, NW16-262

CAMBRIDGE, MA 02139

NASA

GODDARD SPACE FLIGHT CENTER

GREENBELT, MD 20771

DR. S. CHANDRA

DR. K. MAEDA

DR. R.F. BENSON

NATIONAL TECHNICAL INFORMATION CENTER

CAMERON STATION

ALEXANDRIA, VA 22314

12CY ATTN TC

COMMANDER

NAVAL AIR SYSTEMS COMMAND

DEPARTMENT OF THE NAVY

WASHINGTON, D.C. 20360

DR. T. CZUBA

COMMANDER

NAVAL OCEAN SYSTEMS CENTER

SAN DIEGO. CA 92152

MR. R. ROSE - CODE 5321

NOAA

DIRECTOR OF SPACE AND ENVIRONMENTAL

LABORATORY

BOULDER, CO 80302

DR. A. GLENN JEAN

DR. G.W. ADAMS

DR. D.N. ANDERSON

DR. K. DAVIES

DR. R. F. DONNELLY

OFFICE OF NAVAL RESEARCH

800 NORTH QUINCY STREET

ARLINGTON, VA 22217

DR. G. JOINER

PENNSYLVANIA STATE UNIVERSITY

UNIVERSITY PARK, PA 16802

DR. J.S. NISBET

DR. P.R. ROHRBAUGH

DR. L.A. CARPENTER

DR. M. LEE

DR. R. DIVANY

DR. P. BENNETT

DR. F. KLEVANS

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, NJ 08540
DR. F. PERKINS

SCIENCE APPLICATIONS, INC. 1150 PROSPECT PLAZA LA JOLLA, CA 92037 DR. D.A. HAMLIN DR. L. LINSON DR. E. FRIEMAN

STANFORD UNIVERSITY STANFORD, CA 94305 DR. P.M. BANKS

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER BALLISTIC RESEARCH LABORATORY ABERDEEN, MD DR. J. HEIMERL

UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CA 94720 DR. M. HUDSON

UNIVERSITY OF CALIFORNIA LOS ALAMOS SCIENTIFIC LABORATORY J-10, MS-664 LOS ALAMOS, NM 67545

M. PONGRATZ

D. SIMONS

G. BARASCH

L. DUNCAN

P. BERNHARDT

UNIVERSITY OF CALIFORNIA, LOS ANGELES 405 HILLGARD AVENUE LOS ANGELES, CA 90024 DR. F.V. CORONITI DR. C. KENNEL DR. A.Y. WONG

UNIVERSITY OF MARYLAND COLLEGE PARK, MD 20740 DR. K. PAPADOPOULOS DR. E. OTT UNIVERSITY OF PITTSBURGH PITTSBURGH, PA 15213 DR. W. ZABUSKY DR. M. BIONDI DR. E. OVERMAN

WYAN STATE UNIVERSITY 4TH AND STH STREETS LOGAM, UTAN \$4322 BR. R. HARRIS BR. K. BAKER BR. R. SCHUNK